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ABSTRACT 

Dual-band, multi-pass  simulations of low Earth orbit (LEO) satellites are  used to train a feedforward neural 

network to recognize different classes of resident space objects (RSO). Simulated data allow for a controllable and 

diverse set of inputs necessary to test our methods, especially at the initial phase of the evaluation, while avoiding 

the problems and expense associated with real data collection from ground-based facilities. Simulation software is 

used to generate signatures in two visible bands for satellites exhibiting typical bus-types, materials combinations 

and methods of stabilization. Orbits and observational parameters are generated from the relevant statistical 

distribution of the orbital parameters obtained from the Space Surveillance Network, and stabilization is simulated 

external to the framework of the software used to calculate signatures. We examine various pre-processing schemes 

that combine temporal, spectral and solar phase angle (SPA) information from non-glinting signatures into vectors 

that can be used as inputs for our classifier. A metric that assigns a proxy signal-to-noise ratio to each neural 

network output is introduced to determine the confidence level of each result.  
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1. INTRODUCTION 

The US Space Command, through the Space Surveillance Network (SSN), has the critical mission of monitoring the 

health of our space assets and maintaining the catalog of space objects. In addition to the metric data, used for 

constructing orbital information, photometric and radiometric data is also used for space object identification (SOI). 

Neural networks have been seen to be one of the suitable tools for SOI in cases where resolved images of satellites 

are unavailable[1].  Neural networks have been evaluated as a potential automated technique for identifying 

satellites in geosynchronous Earth orbit (GEO), where only non-resolved signatures are available. Deep space assets 

are regularly visible, often for long periods of time which allows for the collection of many light curves. Many GEO 

sats are three-axis stabilized, which means that the crafts reveal almost no relative motion with respect to the 

observer, and combined with a slowly-varying solar inclination angle, provides the observer with a repeatable set of 

viewing angles and lighting conditions for each pass. Simulated multispectral light curves of deep-space satellites 

also provide a good basis for the training and testing of neural networks and are valuable when data from these 

relatively dim objects are not available[2]. In that paper, attitude control and solar panel articulation are modeled to 

account for the changing orientation of GEO spacecrafts. The addition of multi-wavelength data to the neural 

network aids in identification of non-resolved objects by exploiting spectral signatures from the various spacecraft 

materials[3].  

 In this work, we employ neural network techniques in the identification of objects in low Earth orbit (LEO) using 

simulated dual-band spectral data.  As spacecraft become smaller, they become more difficult to resolve because of 

their smaller angular extent, and classifier techniques become valuable tool for SOI. Collection of LEO satellite data  

presents its own set of challenges for use in evaluating neural networks. To properly evaluate a neural network, 

multiple photometric measurements must be made for each satellite under similar observational conditions. At the 

same time, this set of conditions must allow each satellite to be observed over as wide a range of viewing and 

lighting scenarios as possible. This is complicated by the fact that most LEO satellites are rarely visible from one 

particular site on a regular basis under typical experimental conditions. Specifically, 1) the satellite must be 

sufficiently high in elevation to minimize atmospheric effects on the data,  2) for observation in visible wavelengths, 

the object must not be in eclipse during the pass, and 3) nighttime conditions must exist at the observation sites 

during collection times. Also to be considered during data collection campaigns are limitations imposed by weather 
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or otherwise poor seeing conditions. Given these considerations, it could take many campaigns, based at several 

different sites, to collect the requisite amount of data. Certainly, it is preferable to have actual data, and future data 

collection campaigns are planned, but simulations are used in this phase to immediately test the viability of the 

method. 

2. SATELLITE MODELS 
 

Optical Signatures Code (OSC) was developed by Teledyne Solutions, Inc. for U.S. Army Space and Missile 

Defense Command.  It is a set of programs that, among other functions, models ballistic and satellite trajectories and 

calculates infrared and visible optical signatures of hardbodies. Several simulation packages exist that would be 

appropriate for this study, but we use OSC for these tests because of ready access to the source code and our ability 

to use the software to readily model specific spacecraft. Wireframe models of satellites are constructed from a 

palette of shapes available to the user. The number of shapes, as well as the number of facets available on each 

shape, can be modified to allow more complete representations of space objects and increased accuracy in the 

calculation of self- obscuration and self-shadowing of the models.  Typical materials are assumed for the surfaces, 

based on information that can be found for each satellite. Reflectance is assumed to be primarily Lambertian , plus a 

small (20%) specular component to allow for glinting surfaces, such as solar panels.  Radiant intensities are 

calculated for a blue band (468-495 nm) and a red band (738-765 nm). Active satellites are used, which require that 

attitude control be accurately maintained.  For this set of experiments, we externally control the orbit propagation 

and the satellite’s attitude and feed OSC with the relevant parameters needed for the generation of the radiant 

intensity. 

 

Table 1 lists the set of six satellites used in this work. Several criteria were used to select the objects.  

All satellites are active so that attitude-control can be imposed.  Satellites all execute low Earth orbits with 

inclination angles in the 35-65 degree range, thus making neural network identification dependent only on satellite 

geometry and spectral signature, presenting a more rigorous test for the neural network. The revisitation rate, or 

frequency with which a satellite is seen from a ground-based platform under typical experimental conditions, must 

be high enough to generate enough light curves to conduct the tests. Revisitation rate is increased by increasing the 

number of observation sites. Table 2 lists four facilities from which we have received or taken data in past 

collaborations and are chosen for our simulations.  In addition to solar illumination and nighttime operation (solar 

declination greater than 10 degress) requirements, we impose the condition that objects must rise to an elevation of 

at least 20 degrees to be considered visible from a site. No more than one spacecraft is used from any satellite 

constellation, with the exception that satellites from two different generations of the Orbcomm constellation are 

chosen because they are in very similar orbits but are structurally different,  providing an  example of a case where 

satellites can be cross-tagged.  Fig. 1 shows solid body representations of the OSC wireframe satellite models which 

were constructed using the WinOSC GUI included in the OSC software package. 

 

Table 1. List of Simulated Satellites 

Satellite Name Country SSN Number Inclination Purpose No. of Obs 

 FalconSat 3 US 30776 35.432 Civil/Mil 28 

TecSAR Israel 32476 41.026 Mil 20 

Orbcomm FM20 US 25416 44.998 Com 41 

Orbcomm Q2 US 33060 48.444 Com 34 

LatinSat B Argentina 27606 64.558 Com 42 

Jason 1 US/France 26997 66.043 Gov 95 

 

 Orbital position is generated from the relevant statistical distribution of the orbital parameters obtained from the 

Space Surveillance Network. Orbits are propagated using a MATLAB code ported from Vallado’s C codes of SPG4 

by Jeff Beck [4,5], and modified for vector operations. Resulting altitudes, latitudes and longitudes are compared to 

values posted in a real-time satellite tracking website[6]. Agreement to within 0.01 degrees in latitude and longitude 

and ~100 meters in altitude were obtained. Sun position and the position of the observers are also generated as a 

function of time in the Earth-Centered, Earth-Fixed (ECEF) frame for input to OSC.  

 

 



Table 2.  Observation Sites 

Site Name Location Latitude (N) Longitude (E) Altitude (m) 

Hanscom AFB Bedford, MA 42.49 288.72 122 

MRO Socorro, NM 33.99 252.81 3193 

AMOS Maui, HI 20.70 203.72 3058 

NOFS Flagstaff, AZ 35.58 248.59 2273 

 

A typical stabilization mode  is simulated by generating nine direction cosines for each time interval, which describe 

the orientation of the body axes in ECEF frame. Nadir-aligned, Velocity-constrained (NAVC) stabilization is used, 

where the main body axis (ZB) of the satellite points toward Earth center and the velocity is constrained to the XB 

direction.  Each satellite in this study possesses an antenna that points toward the Earth,  so NAVC stabilization is 

suitable for the bodies of the six satellites studied here. Limiting the scope of this work to active satellites serves two 

purposes; a realistic situation is presented by a satellite of known stabilization, and the resulting simulated data can 

be used in future classification techniques and characterization schemes where deactivated objects are either not 

interesting or not useful. A list of active satellites can be found in many places on the Internet, such as a database 

compiled by the Union of Concerned Scientists[7] which is updated  every two weeks.  

 

 Ground-based observation points, as are used here, require long simulated observational periods to accumulate the 

required number of data points. Orbits were propagated through 100,000 5-sec time steps, which simulates an 

approximately six-day observation period, starting at the epoch time of the TLE used for each satellite. When a 

satellite is visible for at least one of the observation sites, OSC is used to calculate radiant intensity in the blue and 

red spectral bands, taking into account obscuration and shadowing and optical properties of the surfaces. After all 

the OSC runs are completed, the outputs are prepared in a format for  input to the neural network. The last column 

of Table 2 indicates how many total times each satellite is seen (number of light curves collected) over the course of 

the observation period. Files which do not provide enough data to generate a useful light curve are discarded.   

 

3. NEURAL NETWORK AND PRE-PROCESSING OF DATA 
 

Neural networks can be valuable tools for the type of pattern recognition problem posed by non-resolved SOI from  

light curves.  The behavior of the neural network is defined by the way its individual computing elements are 

connected and by the strengths of these connections, or weights. The weights are automatically adjusted by training 

the network according to a specified learning rule until it performs the task correctly. Supervised learning is used 

because each light curve used for training is associated with a specific satellite. The MATLAB Neural  Network 

Toolbox supports different types of networks, so the architecture is customized to fit our requirements. Pattern 

recognition problems, such as SOI, are best approached using a feedforward neural network in which weights are 

only updated after all the inputs and targets are presented. Backpropagation is the learning rule which is useful when 

the network is trained with one set of data and is tested with a different, non-overlapping data set. For this first test, 

the default setting of one hidden layer consisting of 20 neurons is used. Backpropagation requires that the transfer 

function, which calculates a scalar output from the weighted input vectors, be differentiable, so we use the default 

tan-sigmoid function. As a result, the values of the output nodes are compressed to lie between 0 and 1. Training is 

commenced using the default value of 1000 epochs, or number of times the entire training set is fed forward through 

the network. The number of epochs is increased until the success rate, or percentage of time a light curve is correctly 

identified, is seen to stabilize. No significant improvement in identification is seen for more than 3000 epochs.  

 

Different schemes are considered to prepare, or pre-process, the data to assist the neural network in its identification. 

Light curves are presented to the neural network in the vector form 

 

LCj = [aj1, aj2, aj3………..ajn],   

 

where n is the number of input nodes for each input light curve LCj. Input node, aji, contains the ith value of radiant 

intensity for the jth pass of a satellite. In this work, the n input nodes are values of radiant intensity in one spectral 

band, or a linear combination of the signal from the red and blue bands, calculated for a specific solar phase angle 

(SPA). 

 



Fig. 2 shows sample light curves for each of the six satellites pre-processed by two different schemes. The red lines 

plot the integrated radiant intensity in the red band (738-765 nm) as a function of SPA, while the blue line represents 

the spectral difference, B-R, of the signal in the two bands. It is seen that for LEO objects, SPA values can vary 

widely from one observed pass to the next.  In order to present the data to the neural network under consistent 

conditions, a pre-selected range that is common to as many passes as possible is chosen. Radiometric data for a wide 

sample of lighting and observing conditions is desirable, but not always practical. About 120 light curves are 

generated in our simulations in which the satellites are observed for a minimum interval of 30 degrees in SPA, but 

not always for the exactly same range in each case. Approximately one-third of these files include data that span the 

entire SPA range of 70-100 degrees. A significant number of files contain data for 30 degree intervals that either 

start or end in the 70-100 degree range, but do not include radiant intensity values for the entire set of SPA angles. 

Visual examination of the plots of the data using different pre-processing schemes reveals that for any one particular 

satellite, the light curve profiles do not appear to vary significantly by shifting the center of the SPA range by up to 

+15 degrees. We use data sets that fit this criterion to increase the number of inputs available for training and 

testing. In the next section, the effect that this shift in SPA has on the results is examined.  

 

An interpolation algorithm is used to generate 61 values of radiant intensity at 0.5 degree resolution for each data 

set. Preliminary tests confirm that results improve with training, so approximately half of the available data sets are 

used to train the network, with the rest reserved for testing. Six output modes, one for each satellite, are activated as 

a result of the testing procedure. A measure of the success rate for identification is given by the number of most 

strongly-activated output nodes which are associated with the correct satellite. 

 

4. RESULTS 

 
Neural network results are obtained  using single band and spectral-difference light curves. Each plot in Fig. 3 

shows the neural network results for testing the red band light curves for one satellite. The fraction of light curves 

most strongly associated with each of the six satellites is indicated by the height of the corresponding column. All of 

the light curves for satellites 25416 (Orbcomm FM38), 27606  (LatinSat B) and 30776 (FalconSat 3) are correctly 

identified, and satellites 26997 (Jason-1) and 33060 (Orbcomm Q2) each have at least a 83.3% success rate. By far, 

the fewest amount of data sets was available for TecSAR (32476), so the neural network received the least training 

for this satellite, and the results in this case are the least successful. The test is repeated using the blue band data, 

with no significant change in the confusion matrix. Approximately 90%  of the single band light curves used for 

testing are associated with the correct satellite. The success rate for the dual-band data is approximately 80%.  The 

neural network is run again for both pre-processing methods, but this time only with data that spans the entire 70-

100 degree SPA range. Ten curves from each object are still used for training, (five, for satellite 32476). This test 

yields 90% and 82% success rates for single-band and dual-band testing, respectively, suggesting that the latitude 

that was taken with the SPA range does not have a significant effect on the results.  

 

While the brightness data used in our test appeared to provide the neural network with the type of information that 

can be used to make its identifications, the utility of color indices in aiding SOI is documented[8] and needs to be 

considered. Combinations of object shape, surface materials and pose give rise to features in one type of data that 

are not present in another. A metric is needed to evaluate neural network results which performs well for all 

situations. We start with a closer examination of the results obtained thus far. 

 

Table 3. Neural network weights for the testing of two red band light curves (046 and 047) of Orbcomm Q2 (33060)  

LC Tested 25416 26997 27606 30776 32476 33060 pSNR 

33060 #046 6.72E-05 0.001144 4.82E-14 6.89E-05 0.00515 0.998222 >500. 

33060 #047 0.038362 5.34E-07 0.145408 0.208011 0.000835 0.011697 3.79 

 

Table 3 shows the results from testing two sets of single-band radiometric data from passes of Orbcomm Q2 

(33060). Curve 046 records a correct identification because the node associated with 33060 is the most strongly-

activated, while Curve 047 is more strongly associated with FalconSat 3 (30776) and LatinSat B (27606).  Although 

the metric indicates a success rate of 50% for these two tests, we assert that the identification for Curve 047 is not as 

strong as that for Curve 046 and should not be treated equally.  A metric is proposed that combines neural network 

results obtained from both brightness and spectral considerations. The network is run for both single-band and dual-

band pre-processing of the data. An algorithm is constructed that: 



 

 reads a the line of output weights corresponding to the test of light curve 1 using single-band results  

 calculates a relative strength, S1,sb, to the highest weight in the line 

 compares S1,sb to threshold T 

 if S1,sb > T, a positive identification is recorded for light curve 1  

 if S1,sb < T, the value S1,db is calculated for the test of light curve 1 using dual-band results  

 if S1,db > T, the identification is confirmed for light curve 1  

 if S1,db < T, light curve 1 cannot be confidently associated with any of the satellites 

 repeat with light curve 2, 3,….n 

 

Since each sample contains only six points (the six output nodes), fitting a distribution to the results is not 

appropriate. Instead, we define the relative strength of an identification as a proxy “signal-to-noise ratio” (pSNR): 

 

      
               

             
 

 

where max (a1, a2,….an) = ak is the weight with the highest magnitude, and  (ai ≠ maximum) is the standard 

deviation of all values, except for that associated with the most strongly-activated node, 

 

    
        

   
 

 

where μ is the mean of the non-maximum weights, and the summation is taken over all i ≠ k. Calculation of pSNR 

for the identification of the two 33060 light curves is seen in the last column of Table 3. The results show the 

identification of the #047 curve is indeed much weaker than that of its counterpart and needs to be validated. 

  

A value for the threshold can be estimated by examining the results of all the SNR calculations. The three lowest 

values of SNR for the single-band testing are clustered together in the interval between 3.79 and 4.22. The next 

lowest value of SNR ~ 7. This observation is used to set the threshold at pSNR ~ 4.3.  Of the three identifications 

with sub-threshold pSNR, two are attached to incorrect results. So, in the limited sample size of this test, a false 

positive is returned on the order of 50% of the time when pSNR < threshold. A similar sampling of the pSNR values 

for the B-R results yields a threshold of  5.5.  Table 4 shows the results of the three sub-threshold single-band data 

sets. It is seen that using our metric confirms one correct result (25416), corrects another result (33060) and is 

unable to correct one other (26997). So, the net result of combining the neural network outputs for the six satellites 

is a small increase in the success rate.   

 

Table 4. Comparison of single- and dual- band results for three specific light curves 

 Red Band B-R 

Sat# / LC# tested NN ID / pSNR NN ID / pSNR 

25416 / 018 25416 / 3.96 25416 / 6.81 

33060 / 047 30776 / 3.79 33060 / 10.74 

26997 / 064 32476 / 4.23 33060 / 36286. 

 

Single band pre-processing works well for the six satellite case used in this study, but may not be as effective when 

resolving the signatures of two or more satellites which are physically similar or are in similar orbits. The efficacy of 

combining neural network results has already been suggested above. A more extreme example is to examine the 

case of two sets of identically-shaped satellites in similar orbits. The two Orbcomm satellites (25416, 33060) used 

earlier are re-modeled using different, but typical, spacecraft materials and propagated through their orbits. The light 

curves from the two original satellites, plus those from the two modified satellites (25416*, 33060*),  are prepared 

using single- and dual- band methods and fed to the neural network.  

 



Fig. 4 compares the results. For the single-band case, satellites 33060 and 33060* are confused almost as frequently 

as they are correctly identified, indicating that they are clearly cross-tagged. Dual-band network results completely 

resolve the two 33060 satellites, and correctly identifies the four satellites for 29 of the 30 test curves. Values of 

pSNR are calculated for each test using the red data and the B-R data, and threshold values are determined for both 

cases. Results are then combined and evaluated as they were for the six satellite case. This time, the combination 

yields an overall identification that improves upon the single-band predictions, but is less than the B-R totals. This is 

due to the fact that some red band light curves are misidentified with a confidence level much higher than threshold, 

so the spectral results are not allowed to correct the errors. 

 

5. CONCLUSIONS 
 

A feedforward neural network is tested to identify space objects in low-Earth orbit using simulated dual-band 

satellite data. High-fidelity wireframe models of six LEO satellites, typical observational conditions and active 

attitude-control are employed to evaluate the neural network performance.  Radiometric signatures collected in a 

single spectral band under nearly constant lighting and viewing conditions are associated with satellites at a success 

rate of  >90%.  

 

The objective is to construct a metric that allows the neural network to perform well over a variety of scenarios. An 

algorithm is introduced that calculates a level of confidence for each result as a measure of the goodness of the 

identification. When the algorithm determines that the value of a proxy signal-to-noise ratio (pSNR) for a single-

band result is below an established threshold, the dual-band output is sampled to validate the identification of the 

light curve. The use of this metric is also applied to the case of identically-shaped objects with different materials 

sets, and the inclusion of color is seen to be important in resolving a possible cross-tagging. In this case, it is the 

dual-band processing that is more accurate. Overall, the combination of methods yields results that improve upon 

using either method separately.  

 

The work presented herein represents a first iteration of our methods.  More data collection, simulated and real, are 

planned for future experiments. Additional spacecraft also need to be included to determine the efficacy of these 

methods and to examine the ability of neural networks to be a viable tool in RSO identification. 
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 Fig. 1  OSC Solid Satellite Models. Models were constructed using the WinOSC GUI. Clockwise from upper left:  

FalconSat3, LatinSat B, TecSAR, Orbcomm FM20, Orbcomm Q2, Jason-1. 



 
Fig. 2 Sample light curves for each satellite. Red band intensity (red line) and spectral difference, B-R, (blue line) 

are plotted as a function of SPA. Only light curves with data in the approximate SPA range 70-100 degrees are used 

to train and test the neural network. 
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Fig. 3  Neural network identification of space objects.  Each plot shows the fraction of tested single band light 

curves that the network associates with each satellite. Ten curves from each satellite (five from 32476) are used for 

training. An overall success rate of 92% is recorded. 

 

 

 

 

 

 

 

 

 

  



 

 
Fig. 4  Neural network results for two sets of identical satellites. Blue column graphs plot the fraction of light 

curves associated with each object when red band data is used for pre-processing. Red columns indicate the use of 

dual-band data. Green columns indicate the final results using the SNR metric.  


